Journal of Engineering Mathematics
Wolters=Noordhoff Ltd.
Printed in the Netherlands.

A VISCOELASTIC ANALYSIS OF GROUND-MOVEMENT DUE TO
AN ADVANCING COAL FACE

by

J. Astin*

SUMMARY

While and elastic analysis of subsidence problems gives results in accord with practical data for essentially
static situations, it fails when applied to'the problem of a moving coal face. This failure appears to be due
to a time-dependent phenomenon associated with the material in which the excavation is moving. This time
effect may be thought of as a lag (that is, the ground does not immediately realize the full extent of the
mining disturbance). It is assumed therefore that the ground behaves as though it were a viscoelastic ma-
terial, exhibiring both initial and delayed elastic states, and it is shown that by a suitable choice of para-
meters the main features of the pracrical results can be reproduced. It is also shown that for the model
used here the difficulties arte due to the large number of parameters involved rather than to any theoretical
consideration.

1. Introduction
The problem discussed here is to understand and possibly predict the

type of subsidence profile that is associated with a steadily moving coal
face, The physical situation is shown diagrammatically in Figure I,

yA

oo of
pirectio?

Fig. 1. AB Represents The Moving Coal Face,

Any analysis of ground-movement due to mining is extremely complicated
because of the large number of factors invelved. It is therefore necessary
to make certain simplifying assumptions. These are of two main types:
firstly those concerned with the physical properties of the ground and sec-
ondly those concerned with the size and shape of the mining disturbance.
These may be termed physical and geometrical assumptions respectively.
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(1) PHYSICAL ASSUMPTIONS

The results obtained by assuming the ground to behave like.a transversely
isotropic elastic medium can be brought into close agreement with exper-
imental data (Berry and Sales 1961 and 1963), when applied to problems
which are essentially static, but fail to account for the lag found in the
advancing coal face problem (see Figure 2),

When the elastic results are used, it must therefore be assumed that
the ground has settled and that time dependent non-elastic effects are no
longer operative,

The simplest way of extending the elastic results to bring in time =ffects
is to assume that the ground behaves like a linear viscoelastic solid which
exhibits a final equilibrium state. This assumption forms the basis of this
paper,

(2) GEOMETRICAL ASSUMPTIONS

It is assumed that the coal seam, and hence the moving disturbance, is
horizontal and that the excavation stretches an infinite distance behind the
face, That is, it is assumed that the only disturbance affecting the ground-
movement is the advancing face, Physically there are four regions at seam
level, These are (1) the undisturbed seam, (2) a supported working area,
(3) an area which is no longer supported but where the rock roof is self-
supporting, and (4) the closed region where the roof has collapsed. Regions
(2) and (3) are termed the zone of incomplete convergence or simply the
non-closed region., For a deep mine (of the order of 2,000 feet), it is
found that the zone of incomplete convergence is considerably less than a
tenth of the mine depth, denoted by h,

In this paper the excavation is considered closed. (That is the non-closed
region is taken to be small compared with the depth of the excavation).
This assumption simplifies the mathematical boundary problem. Also from
the elastic analysis of Berry and Sales it would appear that, at least as
far as - the surface movement (subsidence) is concerned, the degree of
closure does not affect the result to any great extent. Further in discussing
the experimental data a rough allowance is made for the non-closed region,
by moving the origin of the elastic curve back a distance equal to a tenth
of the mine depth, which is a distance greater than the non-closed region.

In order for the problem to be treated as two dimensional (i.e. as a
plane-strain problem) it is necessary to assume that the seam is of an
infinite width. This would be reasonable if the ratio of seam width to mine
depth was large; the reason for the assumption is, however, mathematical
rather than geometrical,

The final assumption is that a steady state has been attained such that
with respect to axes fixed on the disturbance the stress-strain pattern is
stationary. This will be true if the excavation has been moving with constant
velocity for some time, which in this context is of the order of time taken
for the face to advance a distance comparable with the depth of the excava-
tion.

It is convenient at this point to define the coordinate axes used in the
mathematical problem. As shown in figure 1, the x-axis is taken along the
line of advance of the seam, the z-axis is taken in the seam at right angles
to the x-axis, and the y-axis is the upward vertical. The origin at time
t = o, is at the centre of the face, which is moving uniformly with velocity
¢, in the x-direction,
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(3) REASONS FOR FAILURE OF THE ELASTIC RESULT

The subsidence profile for the elastic problem can be expressed as

o o
S = - l{—l—— tan_lxaf1 -—2 tan™ XQ/Z}- %, (1)

,Vrn T - ay a; - @y

where V is the subsidence, V,, is the maximum value of V, «; and o
are the roots of a certain fourth order equation and have positive real
parts (N. B. as the o's are conmiplex conjugates (1) will always yield a real
value for S), and the unit in the x direction is the depth of the excavation.
This result can be obtained from the work of Berry and Sales by a limiting
procedure but it is obtained here from the viscoelastic analysis. The elastic
curve has two main properties; first it is skewsymmetrical about S = -}
and secondly this value occurs at x = 0. The average of eleven excavations
in the Yorkshire coal field has been presented by Wardell and it is found
that the curve is not skew-symmetrical about S = -3, and S = -} occurs
around x = -0, 25 (i.e. at one quarter of the depth of the excavation behind
the face). Here this later result is called the "lag". The above two features
are characteristics of most subsidence profiles of this type (deep exacavat-
tions) and are in direct contradiction to the elastic result.

It may be argued that the '"lag'' is due to non-closure effects but even
when the elastic curve is set back (translated) a tenth of the mine depth
(a figure in excess of the length on non closure found in practice), there
is still a considerable lag,

In Figure 2 the values a; = 4,45 and a, = 0.45 are taken in accord with
the work of Berry (1963),

A. Practical Curve

B. Elastic Curve Translated
To Allow For Non-Closure

C. Elastic Curve

X
Fig. 2. Graph Of Subsidence, S, Against X =T]- .

2. Mathematical Formulation

The mathematical problem treated in this paper is one of plane-strain,
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but in order to relate the final viscoelastic state with meaningful physical
constants, it is necessary to state the elastic stress-strain relations in
their full three dimensional form.

The stress-strain relations for a iransversely isotropic elastic medium
with the y-axis as the axis of symmetry can be written as

au

Ey g = Ey 3% % T Yy oy Vy 0y
E
- v _ = -
Exsy = By W—« -V o, +(Ey>0y Vy o,
o ow _
EXEZ-EXS-Z———VXUX—VO‘FOZ
_ ou d _
2M €xy = M (ay +—ax> = Ty
_ ow |, av _
2M Exz = M (5}74- -—Z‘) ’T_xz

3 qu , aw) _
2E € T By (35 * Sx—> =),

where E, and E, are Young's moduli, v, and v, are Poisson's ratios. and
M is a shear modulus (see Berry and Sales 1961), N.B. The symbols E,,
E,, VY, Vv, and M are physical elastic constants, however when dealing
with the viscoelastic model they will be treated, essentially as time-de-
pendent linear operators,

For the case of plane strain in the (x,y) plane, €, = €y, = €, =0,
and the stress-strain relationship reduces to
ou 2
B, & =Ex5§=(l—Vx)ox'yy(1+’/x)0y’
v Ex 2
B =B gyt -y (Lt mla tlg o w by
pu , ov)
M (-37 ax> xy
and o =V, o t+ V., o,.

ou _
'a; = Sl UX + 52 Gy
i
%=Szax+s3cy>, (2)
ou ov _
3y to5x T 28, Ty
with s; = (1 - 1,°)/Ey s, = - (1 + )/E,,
- _ ., 2 =
s, = 1/Ey vy /E,, and s, = 1/2M.
For isotropy v.= vy =vy, E_=E =E,

X y X y
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and 1/2M = (1 + v)/E ; that is s, = s

1 3

and 8, = 8; - 85.

Equations of the same form as (2) can be used to characterize a trans-
versely isotropic, linear, viscoelastic medium provided, s;, s,, s5, and
s, are now interpreted as time dependent linear operators. By means of
Boltzman's superposition principle the general form of these operators is
given by hereditary integrals as used by Volterra (1930).

The form of stress-strain relationship used in this paper will therefore
be taken as

t 90, L ch
€ = 3}; = 5 Sl (t - tl) “‘—"atl dtl + 5 Sz(t - tl) _atl‘dtl N
-0

ov Bcry
€y = '55; = 5 Sz(t - tl) dtl j 1 at dtl s (3)
; oT
_ odu ov _ Xy
2€xy = 3}—’ + a—x = 2 5 S4(t - tl) _atl dtl >

-0

where t is the present time and the s;'s are creep functions which are func-
tions of (t-t;1), assumed to be present, - that is they are memory functions,
so that the material has some integrated recollection of earlier states.

In addition to (3) we also have the equations of motion, which, for the
problems considered here, are assumed to be replaceable by the ''quasi-
static'' equations

E)crx aTX
ox T oy "0
(4)
aay . aTXY .
Oy ox

Consider now the last equation of (3)

where

(Mathematically this implies that the face has been moving uniformly from
t = - to the present time, physically however it is only necessary for
the face to have been moving for a sufficiently long time that the startof
mining operation is of considerably less importance to the subsidence profile
than the moving face - see introduction).
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This may be integrated by parts to give

sy (1 - 7) Ty 971 F $,(0) Ty (5)

€
Xy Xy

g1

provided 7y (-e0,y) = 0 that is 7, is zero at an infinite distance ahead of
the face, 1irrespective of the value of y, (the prime denotes a differential
coefficient).

Before proceeding further it is necessary to define the Fourier trans-
form of a function, The definition used in this paper is as follows: if f is
a function of 7 then f the transform of f with respect to 7 is given by

oo

j f(7) e™¥dr,

~co

the bar being used to denote transformed quantities.
Taking the transform of (5) with respect to 7 and making use of the con-
volution theorem gives

€y =8, ’Txy (6)

where §4 = (27r ss (w) + s4(o))

It is clear that the other integrals occurring in (3) may be treated sim-
3
ilarly and upon noting .'Tf{ = - égf; by the steady state assumption, equa-

tion (3) and (4) can be replaced by

-

iw- _ ~ = ~ =
Tu—sl O'x+sz (Ty,
dv  _ ~ = A
W —Sz O'X +S3 O'y,
di | iw - _ s =
—d—_{r+—c_v-zs47xy’> (7}
47
1w - TXY _
=0,
c ¥ dy
X dc
iw = y
=T + —= =
c Xy dy 0 J

From (7) it is easily deduced that
4z 2 22 4
~ d'f W . 2 d'f w\ -~ 7
s—_—2<——) 59 + 5 _+<—)sf:0
1 Cle) e s o (T s : (8)

where f is any one of Oy oy, 'rxy,

The general solution of (8) is

@ or ¥ (c.f. Berry and Sneddon 1958).

wy_ vy oy oy

- ~To ca co co
f=Ae“+rBe@rCce™t+rDe 2,
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with + @y and + @, the roots of

€)
The boundary conditions now serve to determine A, B,C and D.
3. Infinite Medium

The physical assumption of complete closure is taken to correspond to
a discontinuity in displacement (dislocation) of amount - 2/2 and this leads
to the following boundary condition, on y = 0,

Av = - 12 x < ct
Av = 0 X > ct
Tyy = 0 for all x.

where Af denotes the discontinuity in £ across y = 0.

In terms of 7 these are, ony = 0,

Av = - Z/2 T>0
Av = 0 T<O0 (10)
Ty = 0 for all .
The boundary value problem is best solved by assuming that &, = P(w)
is known on y = 0 and then using (10) to determine P,
The solution is given by
7 1ey) gl
_ col [
Gy = ————3Ya;e ! - aye 2
@ T %
- -y 1wy
_ P COL2 e COLl
= o e -~ s
o agag(a may) 2
— @yl -yt
) O P LR 11
Txy iw (- @) ’ (11)
~ 1wy 2 eyt
_ D n Sy co . Sy <o,
v _ “wyt 1wyl
- _ -cP ~ 2 ~ ca 2 ~ o
VT el e -ay) {(33‘1’1 - Sgle 1 o-(Sgag® - s5)e 2

= _ {iw

and =
lwlc sgla;ta,)2V2T
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It should be noted that (11) satisfies the conditions oy = p(w), Ty = 0,
ony = 0, and thus the above solution can be used witﬁ appropriaté func-
tions P(w), for the problem of arbitrary o, on a shear free surface y = 0,

The above solution is essentially that for a dislocation moving steadily
through an infinite transversely isotropic, viscoelastic medium.

For the case of isotropic (o; = ag) and for a creep function s; of the
standard linear solid type {s3 = s (1 ~ r e )) the equation for P can be
inverted in terms of exponential integrals and it agrees in form with a
similar problem solved by Eshelby (1949) and (1961),

4. Half plane

In section 3. the solution represented a discontinuity in an infinite medium
located on y = 0. The present section gives the solution representing the
same discontinuity located on y = -h, with a traction free boundary at
y = 0.

Firstly move the discontinuity in section 3, to y = -h and denote the
stresses and displacements by the subscript -h. Secondly move the dis-
continuity in section 3, toy = +h and denote the stresses and displacements
by the subscripts +h, Then since all the equations are linear the sum of
these two will also satisfy the basic equations, and it will have the required
discontinuity of displacement ony = -h, It is found that ony = 0 Tay = 0
- wh ~ wh

C(Xl cao,
a.e - a,e 2

@ T G

In order to solve

but o, = P' (say) where P' = 2P
the problem therefore it is necessary to add a further stress field which
satisfies the conditioas o, = -P' and 7,, = 0, on y = 0, and there are
no displacement discontintities introduced by this field in the lower half
plane. This third field is therefore given by (11) with P replaced by -P!.
Let the stresses and displacements associated with this problem be denoted
by primes.
The complete solution can be represented symbolically therefore by

oy = Gyh + O_Y*h + oy
o, = th + O'X-h + o
Ty T Ty T Tw, o
u=u +tu, +ou
and v = v o+ v, v

As the practical data is concerned with surface movement {(subsidence)
the rest of the paper will be concerned with the value of v (the vertical

movement) on y = 0,
It is clear from the above that on 'y = 0, v = v! so V = ¥ which from
(11) is given by
_ - .
Flow) = V'(o,w) = V = V' = —Cﬂ)— Sgla; + o),

when the value of P' is substituted this becomes
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~lwlh ~lwlh
_ _ 26D « o€ cay . a, e coly
vV = V' = o Sglay; + @) rR— ,
1 2
which again from (11) is

-wh ~=wh
- [ % © - aye 72
V=7 (12)

W @, - ay

For the elastic problem with the a's real (12) can be inverted to give
(see Erdelyl 1954)

o [0}
S = v_1l;_ "1t tan™ Xa -— 2% _ tan' Xe s (13)
7 T ey - a I ay - o
where X = —X—%Lt

In (12) as X — -, S = - 1 and as X — + o S — 3§ but physically
as X - -, S = -1, and as X — +o, S — 0; this can be remedied
by substracting a half from each side, this is justified as this is a rigid
body displacement,

Hence for the elastic curve.

LV_1 5 -1 . -1 1
S = z— = -7?{0—1‘__&; tan Xa’l 71—_—02' tan X(.l’l -3, (14)
where in accord with the work of Berry (1963) the a's are taken as real,

for complex o's the result contains logarithmic terms, From (12) it is
found that

S = ¥ = %_r .’.A(f)w) sinX—Chw dw + %jBEHw) Cos ng dw - 7, (15)
(o] o
where A(w) and - B(w) are the real and imaginary parts of
-~ hw -hw

cal ca2
ale T Qo€

& T A

and the % has been introduced so that (15) reduces to (14) when the o's

are real and constant
<0

The integralsj A(w)dw and j EL%E)‘ dw, can be given physical interpre-

<«

(] (o]
tations as follows.

In (15) put X = 0 then

S(0,0) = %(O,O) - _]:7_,: §Bh()w) dw - %,

and thus % 5 Bbgw) dw, measures the deviation of S(o, o) from half subsidence,

0
this integral will be called the "lag integral'’.
If (15) is differentiated with respect to X and then X is put equal to zero,
it is found that
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ds B
<H_X) = —C_ﬂ: 5 A(w)dw
® o 0
So 5 A{w)dw, is a measure of the slope of the subsidence curve at the origin,

0 .
These two parameters are discussed further in the next section where
some numerical results are presented,

5. Nuwmervical Analysis

From (15) it is clear that the subsidence curve depends on the S's by
way of ¢, and o,; also from equation (9) it can be seen that of the §'s
all behave similarly then @, and ¢, are constants and (15) gives a solution
similar in form to the elastic result.

The simplest way to ensure that the a's are not constants, but functions
of w is to assume that the ground behaves differently in its respounses to
shear and simple extension,

It is therefore assumed that s, is a constant while for j # 4, s = 8;(0)
(1 - r e®), Ina one dimensional problem a creep function of the above
type is equivalent to a spring in series with a Voigt model and it is some-
times called a standard linear solid, It exhibits initial and final elastic
states together with viscous flow. (Note the analysis is not significantly
altered if s, is assumed to creep as above and the other s;  are regarded
as constants). )

It is found on using (6) that

8 () = s, (M{i—j—%‘ﬁ} (16)

for j # 4 while §, = s, (o).

In accord with the work of Berry (1963) it is assumed that in the final
elastic state ¢; = 4.45 and o, = 0.45.
This means that

Sg(e0) + sy() = 10 sg(w)

(17)
and S, () = 4 s, {00)
From (9) it is seen that S (%)
A 106 - 10iw + riw
2 2 (S2784) 3 ()
o tapt = 2Ty =2 5 - iw (1 - r)
- (18)
d 2 2 ° Sl(OD) 4
an o3 o = = = =
i 3 Sa(eo)
i.e @ o, = 2
89 () S, (o) 4 vy o ,
But S 5 (o) = 4 1 (@) = T H v, (from (2)), and if it supposed that

S (e0)

Sg (e0)

v
o} <—D—X—<%then - 4 < < o, As there is no experimental data to sug-

y
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gest a value for this ratio and as it does not significantly affect the value
of @2 + a2 it seems reasonable to take this ratio as -2 that is in the
centre of the range,

With the above assumption equation (18) gives

(56 - Biw - riw) _
Sy T K ()

2 + 2 =
o, @, 4
and a g = 2

The above give

K+ 1 + VK -1
VK +1 - VK -1

The values of A(w) and %ﬂ were found for various values of %, r and 9,

E (19)

n

o)

@

o0
Because of the physical meanings of S A(w)dw and 5 E(f—)g)—dw it was decided

o}
to see if, for a given h/c, values r and 6 could be found to give the same
sort of lag and slope found in practice (i.e. 0.23 and 1.8 respectively).
The results for h/c = 3.5 (h in feet, ¢ in feet per year) are given as these
are fairly typical,

Table 1.
h/c = 3.5 6, inverse years "lag"” "slope"”
r=20,2 0.1 0.005 2.2
0.4 - 0,013 2.2
2.0 0.019 1.9
r=0.5 0.1 0.02 2.3
0.4 0.03 2.2,
2,0 0.04 2,1
r =0.8 0.1 0.05 3.8
0.4 0,10 3.3
2,0 0.20 2,2
r=1,0 0,1 0.26 22
0.4 0.32 17
2.0 0,38 13

From the table it is seen that &> 2 (inverse years) and that of the tabu-
lated values r = 0, 8 gives the most reasonable values for the two integrals.
The results are presented graphically in Figures (3) and (4).

6. Dimensionless Pavameters

If in equation (13) we change the variable of integration from w to W =

%, (15) becomes
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4t A A r=08
‘ 8.r=05
C.r=02
34 ¢ D.r = D{Elastic Curve)
D
!
24 T ————— {
Yt I
v
1+
V Represents The Observed Value
g 4 7 5
h 2]
Fig. 3. Graph Of Py ‘,.A(w)dcu Against 6,
YRS

-~ >

Ars1io
B.r=08
C.r=05
D.r=02
E.r =0 (Elastic Curve)

034

011

-
-’

1

Wt

o0
. 1 (3B .
Fig. 4. Graph Of The Lag Integral = 5; Against §,
Y is The Observed Value(i
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= W_
a, € “1 - a, € @2
where A - 1B = , with «
2

1

and a, now expressed in terms of W. Making the same physical assumptions
as in section 5. @, and «, are still given by (19) but now
5M - 5iW - riW

M - iW (1-r)

K:

where M = < -

From this the value of S is’ seen to depend on two dimensionless para-
meters r and M, The parameter r is a measure of the ratio of the initial
values of the creep functions to their final values, If r = 0 (K=5) then the
result reduces to the elastic problem.

M = 6Th is the ratio of two times: 61 is a "natural time" due to the

assumed viscoelastic properties of the ground, while h/c is an imposed
time due to the mining conditions (it is in fact the time taken for the face
to advance a distance equal to the depth of the excavation),
5+ r
1 -r°
of the elastic result with the creep functions having their initial values.
When M is large (a slow excavation) then K = 5, this is the form of
the elastic result with the creep functions having their final values.

When M is small (a fast excavation) then K = this is the form

7. Conclusions

At present insufficient practical and theoretical investigation of time
effects in mining preclude any firm conclusion on the feasibility or use-
fulness of a viscoelastic analysis., However, this paper shows that with an
appropriate choice of 4 and r the main features of the subsidence profile
can be reproduced; further the term involving B(w) in equation (15) will al-
ways procedure a lag and this term also destroys the symmetry found in
the elastic case. It would seem therefore that for the moving coal face the
model used here should prove more suitable than a purely elastic one,
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