
Journal of Engineering Mathematics  
Wolters-Noordhoff Ltd. 
Printed in the Netherlands. 

A VISCOELASTIC ANALYSIS OF GROUND-MOVEMENT DUE TO 
AN ADVANCING COAL FACE 

by 

J. Astin* 

SUMMARY 

While and elastic analysis of subsidence problems gives results in accord with practical  data for essentially 
static situations, it fails when applied t o t h e  problem of a moving coal  face.  This failure appears to be due 
to a t ime-dependent  phenomenon associated with the mater ia l  in which the excavation is moving.  This t ime  
effect may be thought of as a lag (that is, the ground does not immedia te iy  realize the  full extent of the 
mining disturbance). It is assumed therefore that the ground behaves as though it were a viscoelastic m a -  
terial ,  exhibiting both initial and delayed elastic states,  and it is shown that by a suitabie choice of para-  
meters the main  features of the practical results can be reproduced. It is also shown that for the model  
used here the difficulties are due to the large number of parameters involved rather than to any theoretical 

consideration. 

1. In troduct ion  

The p r o b l e m  d i s c u s s e d  h e r e  is to unders tand  and poss ib ly  p r ed i c t  the 
type of subs idence  p ro f i l e  that is a s s o c i a t e d  with a s tead i ly  moving coa l  
face .  The phys i ca l  s i tuat ion is  shown d i a g r a m m a t i c a l l y  in F i g u r e  I. 

yl 

Fig. i. A B Represents The Moving Coal Face,  

Any ana lys i s  of g round -movemen t  due to mining is  e x t r e m e l y  compl ica ted  
because  of the l a rge  number of f a c t o r s  involved.  It is  t h e r e f o r e  n e c e s s a r y  
to make certain simplifying assumptions. These are of two main types: 
firstly those concerned with the physical properties of the ground and sec- 
ondly those concerned with the size and shape of the mining disturbance. 
These may be termed physical and geometrical assumptions respectively. 
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(1) PHYSICAL ASSUMPTIONS 

J. Astin 

The results obtained by assuming the ground to behave like a transversely 
isotropic elastic medium can be brought into close agreement with exper- 
imental data (Berry and Sales 1961 and 1963), when applied to problems 
which are essentially static, but fail to account for the lag found in the 
advancing coal face problem (see Figure 2). 

When the elastic results are used, it must therefore be assumed that 
the ground has settled and that time dependent non-elastic effects are no 
longer operative. 

The simplest way of extending the elastic results to bring in +{~oe ~ffects 
is to assume that the ground behaves like a linear viscoelastic solid which 
exhibits a final equilibrium state. This assumption forms the basis of this 
paper. 

(2) GEOMETRICAL ASSUMPTIONS 

It is assumed that the coal seam, and hence the moving disturbanee, is 
horizontal and that the excavation stretehes an infinite distance behind the 
faee. That is, it is assumed that the only disturbance affecting the ground- 
movement is the advancing face. Physically there are four regions at seam 
level. These are (i) the undisturbed seam, (2) a supported working area, 
(3) an area which is no longer supported but where the rock roof is self- 
supporting, and (4) the elosed region where the roof has collapsed. Regions 
(2) and (3) are termed the zone of incomplete eonvergenee or simply the 
non-closed region. For a deep mine (of the order of 2,000 feet), it is 
found that the zone of incomplete convergence is considerably less than a 
tenth of the mine depth, denoted by h. 

In this paper the exeavation is considered elosed. (That is the non-closed 
region is taken to be small compared with the depth of the excavation). 
This assumption simplifies the mathematical boundary problem. Also from 
the elastic analysis of Berry and Sales it would appear that, at least as 
far as the surface movement (subsidence) is concerned, the degree of 
elosure does not affect the result to any great extent. Further in discussing 
the experimental data a rough allowance is made for the non-closed region, 
by moving the origin of the elastic curve back a distance equal to a tenth 
of the mine depth, which is a distance greater than the non-closed region. 

In order for the problem to be treated as two dimensional (i.e. as a 
plane-strain problem) it is necessary to assume that the seam is of an 
infinite width. This would be reasonable if the ratio of seam width to mine 
depth was large; the reason for the assumption is, however, mathematical 
rather than geometrical. 

The final assumption is that a steady state has been attained such that 
with respect to axes fixed on the disturbance the stress-strain pattern is 
stationary. This will be true if the exeavation has been moving with eonstant 
velocity for some time, which in this context is of the order of time taken 
for the face to advance a distance comparable with the depth of the excava- 
tion. 

It is eonvenient at this point to define the eoordinate axes used in the 
mathematieal problem. As shown in figure I, the x-axis is taken along the 
line of advance of the seam, the z-axis is taken in the seam at right angles 
to the x-axis, and the y-axis is the upward vertical. The origin at time 
t = o, is at the centre of the fae% which is moving uniformly with veloeity 
c, in the x-direetion. 
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(3) REASONS FOR FAILURE OF THE ELASTIC RESULT 

The subsidence profile for the elastic problem can be expressed as 

S - [Vrn I ~ - O~2 tan-lxal O~i - ~2 tarl-i xc~2 - 7, (1) 

w h e r e  V i s  the  s u b s i d e n c e ,  V m i s  the  m a x i m u m  v a l u e  of V, a l  and  ~2 
a r e  the  r o o t s  of a c e r t a i n  f o u r t h  o r d e r  e q u a t i o n  and h a v e  p o s i t i v e  r e a l  
p a r t s  (N. B. a s  the  c~'s a r e  c o m p l e x  c o n j u g a t e s  (1) w i l l  a l w a y s  y i e l d  a r e a l  
v a l u e  f o r  S), and the un i t  in  the  x d i r e c t i o n  i s  the  dep th  of the  e x c a v a t i o n .  
T h i s  r e s u l t  c a n  be o b t a i n e d  f r o m  the w o r k  of B e r r y  and  S a l e s  b y  a l i m i t i n g  
p r o c e d u r e  bu t  i t  i s  o b t a i n e d  h e r e  f r o m  the v i s c o e l a s t i c  a n a l y s i s .  The  e l a s t i c  
c u r v e  h a s  two m a i n  p r o p e r t i e s ;  f i r s t  i t  i s  s k e w s y m m e t r i c a l  a b o u t  S = -�89 
and  s e c o n d l y  t h i s  v a l u e  o c c u r s  a t  x = 0. T h e  a v e r a g e  of  e l e v e n  e x c a v a t i o n s  
in  the  Y o r k s h i r e  c o a l  f i e l d  h a s  b e e n  p r e s e n t e d  b y  W a r d e l l  and  i t  i s  found  
t ha t  the c u r v e  i s  not  s k e w - s y m m e t r i c a l  a b o u t  S = 1 1 -7 ,  and  S = -7 o c c u r s  
a r o u n d  x = - 0 . 2 5  ( i . e .  a t  one q u a r t e r  of the  d e p t h  of the  e x c a v a t i o n  b e h i n d  
the f a c e ) .  H e r e  t h i s  l a t e r  r e s u l t  i s  c a l l e d  the  " l a g " .  T h e  a b o v e  two f e a t u r e s  
a r e  c h a r a c t e r i s t i c s  of m o s t  s u b s i d e n c e  p r o f i l e s  of t h i s  t ype  ( d e e p  e x a c a v a t -  
l i o n s )  and  a r e  in  d i r e c t  e o n t r a d i c t i o n  to the  e l a s t i c  r e s u l t .  

I t  m a y  be a r g u e d  t h a t  the " l a g "  i s  due  to  n o n - c l o s u r e  e f f e c t s  bu t  e v e n  
when  the e l a s t i c  c u r v e  i s  s e t  b a c k  ( t r a n s l a t e d )  a t en th  of the m i n e  d e p t h  
(a f i g u r e  in  e x c e s s  of the  l e n g t h  on non c l o s u r e  found in  p r a c t i c e ) ,  t h e r e  
is still a considerable lag. 

In Figure 2 the values al = 4.45 and a2 = 0.45 are taken in accord with 
the work of Berry (1963). 
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A. Practicat  Curve 
B.  Etastic Curve Transl.ated 

To Attow For Non-Ctosure 

C. Et=stic Curve 

x 
Fig. 2. Graph Of Subsidence, S, Against X = ~ - .  

2. Mathemat ical  Formulat ion  

The mathematical problem treated in this paper is one of plane-strain, 
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but in order to relate the final viscoelastic state with meaningful physical 
constants, it is necessary to state the elastic stress-strain relations in 
their full three dimensional form. 

The stress-strain relations for a transversely isotropic elastic medium 
with the y-axis as the axis of symmetry can be written as 

8u 
E x e  x = E x - ~ - =  % - Vy f y  - vx f z  

Exey = Ex 3v _ /i ~\EI_~_ } 
by ~Y ~x + ~y Vy fz 

bw 
E e =E 

x z x bz  - Ux Crx - Vy fy + ~z 

= = Txy 

= = TXZ 

= E x = (1  + v x ) % ~  

2M e xy 

2M e 
XZ 

2E 
x X Z  

where E.. and E. are Young's moduli, v.. and m are Poisson' s ratios and 
A y ~ Z 

M is  a s h e a r  m o d u l u s  ( s e e  B e r r y  and  S a l e s  1961) .  N . B .  T h e  s y m b o l s  E x,  
Ey., ~x, V.y a nd  M a r e  p h y s i c a l  e l a s t i c  c o n s t a n t s ,  h o w e v e r  w h e n  d e a l i n g  
w i t h  the  v i s c o e l a s t i c  m o d e l  t h e y  w i l l  be t r e a t e d ,  e s s e n t i a l l y  a s  t i m e - d e -  
p e n d e n t  l i n e a r  o p e r a t o r s .  

F o r  the  c a s e  of  p l a n e  s t r a i n  in the  ( x , y )  p l a n e ,  ~z = eyz = <xz = 0, 
and  the  s t r e s s - s t r a i n  r e l a t i o n s h i p  r e d u c e s  t o  

bu _ (1  - Vx 2) fx Vy (1  + vx )  Oy Ex ex = Ex bx 

by vy (1 + Z,,x)o x + - Vy 2 f ly ,  

and % -- Vx f x  + Vy % .  

These equations can conveniently be written 

w i t h  

F o r  i s o t r o p y  

b U  - 

b x  Sl  f x  + S2 fy  

b v  
b--#- = s2 f x  + s3 f y  , ( 2 )  

8_pu by  
by  + ~x- = 2 s 4 7xy 

s 1 = (1  - v x 2 ) / E x ,  s 2 = 5 ( 1  + vx)lEx, 

S 3 = i/Ey - ,y2/E x, and s 4 = I/2M. 

_-- = = v x Vy v,  E x Ey = E ,  
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and 
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1/2M = (1 + v)/E ; tha t  is s 1 = s 3 

S 4 = S 1 - S 2 . 
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Equations of the same form as (2) can be used to characterize a trans- 
versely isotropic, linear, viscoelastic medium provided, sl, s2, s3, and 
s 4 are now interpreted as time dependent linear operators. By means of 
Boltzman's superposition principle the general form of these operators is 
given by hereditary integrals as used by Volterra (1930). 

The form of stress-strain relationship used in this paper will therefore 
be taken as 

C X - 

t 8 c  

i ~ 5 8Uax - S l ( t  - t l )  8-~-1 d t l  + s2(t  - t l )  d t l '  
_ ~  - c o  

t 

ey 3y s2(t  - t l )  -~-1 d t l  + sa ( t  - t l )  ~ - 1  dt l  ' (3) 

t 

2exy 3u + 8v 5 3rxy 
= 3--y ~ = 2 s4(t - tl)--~-i dtl , 

-co 

where t is the present time and the sj's are creep functions which are func- 
tions of (t-tl) , assumed to be present, - that is they are memory functions, 
so that the material has some integrated recollection of earlier states. 

In addition to (3) we also have the equations of motion, which, for the 
problems considered here, are assumed to be replaceable by the "quasi- 
static" equations 

~cT x a~xy _ 

8x + 8y - 0 

8CTy a'rxy - I (4) 
3y +-~7-x - 0 

C o n s i d e r  now the l a s t  equa t ion  of (3) 

i 3rxy 
exy = s4(t  - t l )  ~ d t , .  

- ~ o  

With the assumption of a steady state this equation can be replaced by 

i Orgy 
~xy = S4(T - ~'1) - ~ 1  dT1,  

X 
where r = t - c x and ~-I = tl - c" 

(Mathematically this implies that the face has been movin K uniformly from 
t = -~o to the present time, physically however it is only necessary for 
the face to have been moving for a sufficiently long time that the startof 
mining operation is of considerably less importanee to the subsidence profile 
than the moving face - see introduction). 
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This may be integrated by parts to give 

7 7  

6xY = f s4 ('r - T1)Txy d r  I + S4(O ) rxy ,  (5) 

p r o v i d e d  %. (-0o, vl = 0 t ha t  i s  rxy is  z e r o  a t  an  in f in i t e  d i s t a n c e  a h e a d  of 
the I a e e ,  I r r e s p e c t i v e  of the v a l u e  of y, (the p r i m e  d e n o t e s  a d i f f e r e n t i a l  
c o e f f i c i e n t ) .  

B e f o r e  p r o c e e d i n g  f u r t h e r  i t  i s  n e c e s s a r y  to def ine  the F o u r i e r  t r a n s -  
f o r m  of a func t ion .  T h e  d e f i n i t i o n  u s e d  in th i s  p a p e r  is  a s  fo l lows :  if  f i s  
a f unc t i on  of r t hen  ) - t h e  t r a n s f o r m  of f wi th  r e s p e c t  to r i s  g iven  b y  

f(co) = ~ 1  ; f(r) eiZ~dr, 

the b a r  b e i n g  u s e d  to deno te  t r a n s f o r m e d  q u a n t i t i e s .  
T a k i n g  the t r a n s f o r m  of (5) wi th  r e s p e c t  to r and m a k i n g  u s e  of the c o n -  

v o l u t i o n  t h e o r e m  g i v e s  

6xy = S4 Txy (6) 

where 

I t  i s  c l e a r  tha t  the o t h e r  i n t e g r a l s  o c c u r r i n g  in (3) m a y  be t r e a t e d  s i m -  
af 1 Of 

ilarly and upon noting ~x - e at' by the steady state assumption, equa- 

tion (3) and (4) can be replaced by 

--uo = 41 ~ +s 2 ~, 

^ _ _  

dV - s2 ~x + sa Cry, 
dy 

dg it0 _ 
d-y + --Ve = 2 s4 ~:y 

iw d~xy 
--c - ~ x  + dy  - 0 , 

d~ 
i~ - Y - 0 
~ - r x y  + dy 

(v)  

From (7) it is easily deduced that 

s 1 d 4 f  2 (;2 + & )  - -  + ;3 f = o, ( s )  
dy 4 dy 2 

w h e r e  ?- is  a n y  one of ~x, ~y '  rxy,  ~ o r  V (e.r. B e r r y  and Sneddon  1958). 

T h e  g e n e r a l  s o l u t i o n  of (8) i s  

_ coy - w y . . .  +wY +wy 
c~ 1 ca 2 + Cal c~ 2 f = A e +Be C e +De , 



with i ~i 

s a 
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and i a 2 the roots of 

_ 2 4 2 ($2 + $4 ) + $1 = O. 

The boundary conditions now serve to determine A, B, C and D. 
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(9) 

3. In f in i t e  M e d i u m  

The physical assumption of complete closure is taken to correspond to 
a discontinuity in displacement (dislocation) of amount - f/2 and this leads 
to the following boundary condition, on y = 0, 

A v  = - f / 2  x < e t  

Av = 0 x l> ct 

rxy = 0 for all x. 

where Af denotes the discontinuity in f across y = 0. 

I n  t e r m s  of  r t h e s e  a r e ,  o n  y = O, 

A v  = - g/2 r > 0 ] 

A v  = 0 r < 0 ] (i0) 

rxy = 0 for all r. 

The boundary value problem is best solved by assuming that ~4 = P(a) 
is known on y = 0 and then using (i0) to determine P. 

a n d  

The solution is given by 

-- I -IwYl -I~Yl 1 = cc~ 1 
P ~I e ~2 e ca2 

~4 ~I - ~2 

_ Ier -[,wY t = CCt 2 P e - a 2 %%(% -%) 

-cp /-I~yl -I~yl\ r x y -  i ~ ( % - 5 ) l e  c%- e c % ) ,  

-I~y_A\ 
e C a l )  

cP %~2 - e i _ %s 2 - e 2 

f "lwY[ -t c~ I t --C P * C 0 ^ COt 
v -  I ~ [ ( % - % )  ( s a ~  2 - ~ 2 ) e  ~ - ( s a ~ 2  2 - ~ 2 )  e 2 

~ito 
p = I~OI c s3 (c~ l+~2)2V2-u  

(~l} 
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I t  s h o u l d  be  n o t e d  t ha t  (11) s a t i s f i e s  t h e  c o n d i t i o n s  ~y = >(t0), rxy = O, 
on  y = 0, a n d  t h u s  t he  a b o v e  s o l u t i o n  c a n  be  u s e d  w i t h  a p p r o p r i a t e  f u n c -  
t i o n s  ~(t0), f o r  t he  p r o b l e m  of a r b i t r a r y  ay on  a s h e a r  f r e e  s u r f a c e  y = O. 

T h e  a b o v e  s o l u t i o n  i s  e s s e n t i a l l y  t h a t  f o r  a d i s l o c a t i o n  m o v i n g  s t e a d i l y  
t h r o u g h  a n  i n f i n i t e  t r a n s v e r s e l y  i s o t r o p i c ,  v i s c o e l a s t i c  m e d i u m .  

F o r  the  c a s e  of i s o t r o p i e  (~i = 1-~2)and f o r  a c r e e p  f u n c t i o n  s~ of t h e  
s t a n d a r d  l i n e a r  s o l i d  t y p e  (s  3 = s ( r e "& )) t he  e q u a t i o n  f o r  c a n  b e  
i n v e r t e d  in  t e r m s  of e x p o n e n t i a l  i n t e g r a l s  a n d  i t  a g r e e s  in  f o r m  wi th  a 
s i m i l a r  p r o b l e m  s o l v e d  by  E s h e l b y  (1949) a n d  (1961) .  

4. Half plane 

In section 3. the solution represented a discontinuity in an infinite medium 
located on y = 0. The present section gives the solution representing the 
same discontinuity located on y = -h, with a traction free boundary at 
y = 0. 

Firstly move the discontinuity in section 3. to y = -h and denote the 
stresses and displacements by the subscript -h. Secondly move the dis- 
continuity in section 3. to y = +h and denote the stresses and displacements 
by the subscripts +h. Then since all the equations are linear the sum of 
these two will also satisfy the basic equations, and it will have the required 
discontinuity of displacement on y = -h. It is found that on y = 0 ~'xy = 0 

cc~ 1 

bu t  C~y P '  ( say)  w h e r e  P '  2P  l e  - c~2e = = . In  o r d e r  to  s o l v e  
G1 - ~2 

t h e  p r o b l e m  t h e r e f o r e  i t  i s  n e c e s s a r y  to  add  a f u r t h e r  s t r e s s  f i e l d  w h i c h  
satisfies the conditions ~, = -P' and ~. = 0, on y = 0, and there are 

�9 . . 7 .  �9 . X y  

no dlsplaeement dlscontmmtles introduced by this field in the lower half 
plane. This third field is therefore given by (ii) with P replaced by -P~. 
Let the stresses and displacements associated with this problem be denoted 
by primes. 

The complete solution can be represented symbolically therefore by 

= + + , 
Gy Cry h cry h G 4 

(r x = GXh + G x  h + G'x 

~xy = "rxy h + ~r + r '  xY.h xy 

U = U h + U h + U' 

! 

a n d  v = v h + V h + v . 

A s  t he  p r a c t i c a l  d a t a  i s  c o n c e r n e d  wi th  s u r f a c e  m o v e m e n t  ( s u b s i d e n c e )  
the  r e s t  of  t he  p a p e r  w i l l  be  c o n c e r n e d  wi th  the  v a l u e  of v ( the v e r t i c a l  
m o v e m e n t )  on  y = 0. 

I t  i s  c l e a r  f r o m  the  a b o v e  t h a t  on y = 0, v = v'  so  ~ = V' w h i c h  f r o m  
(11) i s  g i v e n  by  

v ( o ; ~ )  = V ' ( o , ~ )  = V - -  V '  e p '  ^ = ~ sa(% + %), 

when the value of P' is substituted this becomes 
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a l e  ca l  - ce 2 e ca2 
V = V '  = ~ c P  S a P  i + % )  

I,D ~ 1  - G2 

which again from (ii) is 
-wh -wh 

ca I ca  2 
-- gi i e a 2 e 

V = ~ c~i - ~ 2  
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(12) 

F o r  the  e l a s t i c  p r o b l e m  wi th  the  o~'s  r e a l  (12) c a n  be  i n v e r t e d  to  g i v e  

t a n  - i  X a  i t a n  "1 Xc~ , (13) 
if2 ffl if2 

( s e e  E r d e l y i  1954) 

S = V _ i I ~I 
f E ~i 

x - ct  
w h e r e  X = 

h 

1 1 In (12) a s  X --~ - o o ,  S --* - 5 a n d  a s  X --~ + co S - *  5 bu t  p h y s i c a l l y  
a s  X --4 - c o ,  S --* - 1, a n d  a s  X ~ + c o ,  S ~ 0; t h i s  c a n  be  r e m e d i e d  
by  s u b s t r a c t i n g  a h a l f  f r o m  e a c h  s i d e ,  t h i s  i s  j u s t i f i e d  a s  t h i s  i s  a r i g i d  
b o d y  d i s p l a c e m e n t .  

H e n c e  f o r  the  e l a s t i c  c u r v e .  

S - V I f  ~ i  ~ l 1 (14) - ~ 1 - ~ f an ' 1  X~ ~ i  ~ t a n ' i  X~ 2 , 

where in accord with the work of Berry (1963) the ~'s are taken as real, 
for complex ~'s the result contains logarithmic terms. From (12) it is 
found that 

v c o s  2- = -~ s i n  X h  1 B(@ Xh~a S =  
C "~ ~d C 

o O 

where A(~0) and - B(to) are the real and imaginary parts of 
- hw -hw 

c ~ _  ca 2 
ffl e ~2 e 

~1 ~2  

-~ (15) 2 , 

a n d  the  �89 h a s  b e e n  i n t r o d u c e d  so  t h a t  (15) r e d u c e s  to  (14) w h e n  the  c~'s 
a r e  r e a l  a n d  c o n s t a n t  

The integrals~ A(t~176 and ~ B(w)- d~~ can be given physical interpre- 
O O 

tations as f o l l o w s .  

In  (15) pu t  X = 0 t h e n  

v ( o , o )  = 1 B(w) d~a 2 , S(o, o) = 7- -~ 
r  

1 [ B(to) o 
and thus ~ j-D-- dto, measures the deviation of S(o, o) from half subsidence, 

o 
this integral will be called the "lag integral". 

If (15) is differentiated with respect foX and then X is put equal to zero, 
it is found that 
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dS(Tx) _ he~ ~A(to)dto 
; o o 

So A(~)d~o, i s  a m e a s u r e  of  t h e  s l o p e  of  t h e  s u b s i d e n c e  c u r v e  a t  t h e  o r i g i n .  

o 

T h e s e  t w o  p a r a m e t e r s  a r e  d i s c u s s e d  f u r t h e r  i n  t h e  n e x t  s e c t i o n  w h e r e  
s o m e  n u m e r i c a l  r e s u l t s  a r e  p r e s e n t e d .  

5, Numerical Analysis 

From (15) it is clear that the subsidence curve depends on the s's by 
way of ~I and ~2; also from equation (9) it can be seen that of the s's 
all behave similarly then ~. and c< are constants and (15) gives a solution 

1 . Z 
similar in form to the elastic result. 

The simplest way to ensure that the a' s are not constants, but functions 
of to is to assume that the ground behaves differently in its responses to 
shear and simple extension. 

It is therefore assumed that s 4 is a constant while for j ~ 4, s = sj(oo) 
(i r e "&) In a one dimensional problem a creep function of ~he - . adore 
type is equivalent to a spring in series with a Voigt model and it is some- 
times called a standard linear solid, It exhibits initial and final elastic 
states together with viscous flow. (Note the analysis is not significantly 
altered if s 4 is assumed to creep as above and the other Sys are regarded 
as constants). 

It is found on using (6) that 

~j (to)= s](~~ 5 - (l-r) } 6  lw: (16) 

for j / 4 while 24 = $4(oo ). 

In accord with the work of Berry (1963) it is assumed that in the final 
elastic state ~i = 4.45 and ~2 = 0.45. 

This means that 

and 

s2(oo ) + %(~o) = 10 s3(~o) 

S 1(oo) : 4 s 3(0o) 
(17) 

From (9) it is seen that / 
(s2+s4) 1105 - 10iw + rito s2(~)h 

s3(~)/ 

~12 + a2 2 = 2 s3 - 2 5 - iw (1 - r )  

sl st(-) 
and ~ 2 ~ 2 = ^ _ - 4 

I i s 3 %(~) 

(18) 

i.e. OllO~ 2 = 2. 

But sa(~ ) = 4 Sl(------ ~ : 

vx i s2 (~) 
o <-~y <~the~ - 4 < %(-----~ 

4 Uy 

1 - u x ' 

(from (2)), and if it supposed that 

< o. As there is no experimental data to sug- 
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g e s t  a value for  th i s  r a t i o  and as  it d o e s  not s i g n i f i c a n t l y  a f f ec t  the value 
of 412 + 4 2 it s e e m s  r e a s o n a b l e  to t ake  th i s  r a t i o  as  -2  tha t  i s  in the 
c e n t r e  of t ee  r a n g e .  

With  the above  a s s u m p t i o n  equa t ion  (18) g i v e s  

o~12 + ~22  = 4 ( 5 5  - 5 i ~  - r i u )  
5 - i~ (1 - r ) :  4K (say) 

and 414 2 = 2 

The above give 

~i = ~;-K+ 1 + q - K -  1 
(19) 

42 = ( Z + l  - ( i f -  1 

The va lue s  of A(@ and B(m)~ w e r e  found for  v a r i o u s  va lues  of c'h r and 5. 

B e c a u s e  of the p h y s i c a l  m e a n i n g s  of A(~0)&o and ~ d~0 it was  dec ided  
O 0 

to  see  if, fo r  a g iven  h / c ,  va lue s  r and 6 cou ld  be found to g ive  the s a m e  
s o r t  of lag and s lope  found in p r a c t i c e  (i. e. 0 .23  and 1 .8  r e s p e c t i v e l y ) .  
The  r e s u l t s  fo r  h / c  = 3 .5  (h in fee t ,  c in fee t  p e r  y e a r )  a r e  g iven  as  t h e s e  
a r e  f a i r l y  t y p i c a l .  

Table I. 

h / c  = 3.5 

r = 0 . 2  

r = 0 . 5  

r = 0 . 8  

r = l . 0  

6, inverse years 

0. I 

0,4 

2.0 

0.1 
0,4 

2.0 

0.1 
0 .4  
2.0 

0.1 
0 .4  
2.0 

"lag . . . .  slope" 

0.005 2.2 

0.013 2.2 

0.019 1.9 

0.02 

0.03 

0, 04 

0.05 
0.10 

0.20 

0.56 
0.35 
0 . 3 8  

2.3 
2.2 .  
2.1 

3.8 

3.3 

2,2 

22 

17 

13 

From the table it is seen that 5 > 2 (inverse years) and that of the tabu- 
lated values r = 0.8 gives the most reasonable values for the two integrals. 

The results are presented graphically in Figures (3) and (4). 

6. D i m e n s i o n l e s s  P a r a m e t e r s  

If in equation (15) we change the variable of integration from t~ to W = 

hi0 (15) becomes 
C ' 

S = V 1 i A' sin XW dW + 1 IB1 cos XW dW 
Z = ff w ~ w . r  

O O 
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v 2_ 

A A . r =  0.8 
B . r =  0.5 

" ~  ? C. r=  0.2 
" ~ .  C D.r = O(E:tastic Curve) 

V Represents Tfla Observed Vatue 

0 J ........... :~ ........ :2 ......... .S-- 

/m 

0.~, 

0 , 3  �84 

V~ 

02' 

o,1 

A 

�9 r O{E/,ast r Curve) 

/ .... ...... 

~ ' ,, ,. * . ,  I . . . .  

1 2 3 

Fig. 4. G~aph Of Tl~e Lag Integral ~- ~ Agai~st 5~ 
r O 

V is T~.e Observed ~,alue~ 
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-W__ -W 

el e c~l - e2 e ~2 

A - iB = ~ _ G2 , with ~1 
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and c~ 2 now expressed in terms of W. Making the same physical assumptions 
as in section 5. c~ 1 and ~2 are still given by (19) but now 

5M - 5iW - riW 
K = 

m - iW ( l - r )  

6 h  
w h e r e  M = 

c 

From this the value of S is seen to depend on two dimensionless para- 
meters r and M. The parameter r is a measure of the ratio of the initial 
values of the creep functions to their final values. If r = 0 (K= 5) then the 
result reduces to the elastic problem. 

M = 6--h-h is the ratio of two times: 6 -1 is a "natural time" due to the 
c 

assumed viscoelastic properties of the ground, while h/c is an imposed 
time due to the mining conditions (it is in fact the time taken for the face 
to advance a distance equal to the depth of the excavation). 

5+ r 
When M is small (a fast excavation) then K = l---U-~-r, this is the form 

of the elastic result with the creep functions having their initial values. 
When M is large (a slow excavation) then K = 5, this is the form of 

the elastic result with the creep functions having their final values. 

7. Conclusion, s 

At present insufficient practical and theoretical investigation of time 
effects in mining preclude any firm conclusion on the feasibility or use- 
fulness of a viscoelastic analysis. However, this paper shows that with an 
appropriate choice of 6 and r the main features of the subsidence profile 
can be reproduced; further the term involving B(~d) in equation (15) will al- 
ways procedure a lag and this term also destroys the symmetry found in 
the elastic case. It would seem therefore that for the moving coal face the 
model used here should prove more suitable than a purely elastic one. 
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